Shady Agwa

Research Fellow


Curriculum vitae


[email protected]


+44 (0) 7950676030


School of Engineering

The University of Edinburgh

1.24D Murchison House, King's Buildings Campus, Edinburgh, EH9 3BF, UK



CIFER: A Cache-Coherent 12-nm 16-mm2 SoC With Four 64-Bit RISC-V Application Cores, 18 32-Bit RISC-V Compute Cores, and a 1541 LUT6/mm2 Synthesizable eFPGA


Journal article


Ang Li, Ting-Jung Chang, Fei Gao, T. Ta, Georgios Tziantzioulis, Yanghui Ou, Moyang Wang, Jinzheng Tu, Kaifeng Xu, Paul J. Jackson, August Ning, Grigory Chirkov, Marcelo Orenes-Vera, Shady O. Agwa, Xiaoyu Yan, Eric Tang, Jonathan Balkind, C. Batten, D. Wentzlaff
IEEE Solid-State Circuits Letters, 2023

Semantic Scholar DOI
Cite

Cite

APA   Click to copy
Li, A., Chang, T.-J., Gao, F., Ta, T., Tziantzioulis, G., Ou, Y., … Wentzlaff, D. (2023). CIFER: A Cache-Coherent 12-nm 16-mm2 SoC With Four 64-Bit RISC-V Application Cores, 18 32-Bit RISC-V Compute Cores, and a 1541 LUT6/mm2 Synthesizable eFPGA. IEEE Solid-State Circuits Letters.


Chicago/Turabian   Click to copy
Li, Ang, Ting-Jung Chang, Fei Gao, T. Ta, Georgios Tziantzioulis, Yanghui Ou, Moyang Wang, et al. “CIFER: A Cache-Coherent 12-Nm 16-mm2 SoC With Four 64-Bit RISC-V Application Cores, 18 32-Bit RISC-V Compute Cores, and a 1541 LUT6/mm2 Synthesizable EFPGA.” IEEE Solid-State Circuits Letters (2023).


MLA   Click to copy
Li, Ang, et al. “CIFER: A Cache-Coherent 12-Nm 16-mm2 SoC With Four 64-Bit RISC-V Application Cores, 18 32-Bit RISC-V Compute Cores, and a 1541 LUT6/mm2 Synthesizable EFPGA.” IEEE Solid-State Circuits Letters, 2023.


BibTeX   Click to copy

@article{ang2023a,
  title = {CIFER: A Cache-Coherent 12-nm 16-mm2 SoC With Four 64-Bit RISC-V Application Cores, 18 32-Bit RISC-V Compute Cores, and a 1541 LUT6/mm2 Synthesizable eFPGA},
  year = {2023},
  journal = {IEEE Solid-State Circuits Letters},
  author = {Li, Ang and Chang, Ting-Jung and Gao, Fei and Ta, T. and Tziantzioulis, Georgios and Ou, Yanghui and Wang, Moyang and Tu, Jinzheng and Xu, Kaifeng and Jackson, Paul J. and Ning, August and Chirkov, Grigory and Orenes-Vera, Marcelo and Agwa, Shady O. and Yan, Xiaoyu and Tang, Eric and Balkind, Jonathan and Batten, C. and Wentzlaff, D.}
}

Abstract

This letter presents CIFER, the world’s first open-source, fully cache-coherent, heterogeneous many-core, CPU-FPGA system-on-chips. The 12 nm, 16-mm2 chip integrates four 64-bit, OS-capable, RISC-V application cores; three TinyCore clusters that each contain six 32-bit, RISC-V compute cores (18 in total); and an electronic design automation-synthesized, standard-cell-based eFPGA. CIFER enables the decomposition of real-world applications and tailored execution (parallelization or specialization) per decomposed task. Our evaluation shows that: 1) the TinyCore clusters increase the throughput and energy efficiency of data- and thread-parallel tasks by up to <inline-formula> <tex-math notation="LaTeX">$7.95\times $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$7.75\times $ </tex-math></inline-formula> over one 64-bit core, respectively; 2) the eFPGA increases the throughput and energy efficiency of hardware-accelerable tasks by up to <inline-formula> <tex-math notation="LaTeX">$9.29\times $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$10.62\times $ </tex-math></inline-formula>, respectively; and 3) using coherent caches for data transfer between the processors and the eFPGA increases the throughput and energy efficiency by up to <inline-formula> <tex-math notation="LaTeX">$11.1\times $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$10.5\times $ </tex-math></inline-formula>, respectively.


Share

Tools
Translate to